Question 1420a

Complex Numbers
2020 Paper 1 Question 4 Variant

Question

Three complex numbers are
z1=1+3i,z2=1+3i   and z3=2(cos34π+isin34π).\begin{align*} z_1 &= - 1 + \sqrt{3} \mathrm{i}, \\ z_2 &= 1 + \sqrt{3} \mathrm{i} \; \textrm{ and } \\ z_3 &= {\textstyle \sqrt{2} \left( \cos \frac{3}{4} \pi + \mathrm{i} \sin \frac{3}{4} \pi \right)}. \end{align*}
(a)
Find z1z2z3{\displaystyle \frac{z_1}{z_2z_3}} in the form r(cosθ+isinθ),{r (\cos \theta + \mathrm{i} \sin \theta),} where r>0{r>0} and π<θπ.{-\pi < \theta \leq \pi.}
[4]
A fourth complex number, z4,{z_4,} is such that z1z4z2z3{\displaystyle \frac{z_1z_4}{z_2z_3}} is real and z1z4z2z3=1.{\displaystyle \left| \frac{z_1z_4}{z_2z_3} \right| = 1.}
(b)
Find the possible values of z4{z_4} in the form r(cosθ+isinθ),{r (\cos \theta + \mathrm{i} \sin \theta),} where r>0{r>0} and π<θπ.{-\pi < \theta \leq \pi.}
[3]

Answer