Question 1404c

Complex Numbers
Polar Form Arithmetic

Question

The complex number z{z} is given by
z=α2γβ,z=\frac{\alpha^2 \gamma}{\beta^*},
where
α=2(cos(56π)+isin(56π)),β=2(cos(14π)+isin(14π)),γ=3(cos23π+isin23π).\begin{align*} \alpha &= { \textstyle 2 \left( \cos \left( - \frac{5}{6} \pi \right) + \mathrm{i} \sin \left( - \frac{5}{6} \pi \right) \right)}, \\ \beta &= { \textstyle 2 \left( \cos \left( - \frac{1}{4} \pi \right) + \mathrm{i} \sin \left( - \frac{1}{4} \pi \right) \right)}, \\ \gamma &= { \textstyle 3 \left( \cos \frac{2}{3} \pi + \mathrm{i} \sin \frac{2}{3} \pi \right)}. \end{align*}
Find z{|z|} and k,{k,} where arg(z)=kπ{\arg(z)=k\pi} and π<arg(z)<π.{-\pi < \arg(z) < \pi.}

Attempt

z={|z| = }
k={k = }

Answer

Question Progress

  • Start
  • Mastery