Question 1321

Vectors II: Lines and Planes
2021 Paper 1 Question 8 Variant

Question

The line l1{l_1} and l2{l_2} have equations
r1=(104)+λ(112)andr2=(414)+μ(110)\begin{align*} & \mathbf{r}_1 = \begin{pmatrix} - 1 \\ 0 \\ - 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \quad \textrm{and} \\ & \mathbf{r}_2 = \begin{pmatrix} 4 \\ 1 \\ - 4 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ - 1 \\ 0 \end{pmatrix} \end{align*}
respectively, where λ{\lambda} and μ{\mu} are parameters.
(a)
Find a cartesian equation of the plane containing l1{l_1} and the point (2,5,5).{\left( 2, - 5, 5 \right).}
[4]
(b)
Show that l1{l_1} is perpendicular to l2.{l_2.}
[2]
(ci)
Find the values of λ{\lambda} and μ{\mu} such that r1r2{\mathbf{r}_1 - \mathbf{r}_2} is perpendicular to both l1{l_1} and l2.{l_2.}
State the position vectors of the points where the common perpendicular meets l1{l_1} and l2.{l_2.}
[6]
(cii)
Find the length of this common perpendicular.
[2]

Answer