Math Pro
about
qns
questions
progress
Question 1304b
Vectors II: Lines and Planes
Equation of a Plane from Direction Vectors
Question
Generate new
The planes
p
1
{p_1}
p
1
and
p
2
{p_2}
p
2
are given by
p
1
:
r
⋅
(
−
2
−
1
1
)
=
−
5
,
p
2
:
r
⋅
(
3
−
3
2
)
=
−
3.
\begin{align*} &p_1: \mathbf{r} \cdot \begin{pmatrix} - 2 \\ - 1 \\ 1 \end{pmatrix} = - 5,\\ &p_2: \mathbf{r} \cdot \begin{pmatrix} 3 \\ - 3 \\ 2 \end{pmatrix} = - 3. \end{align*}
p
1
:
r
⋅
−
2
−
1
1
=
−
5
,
p
2
:
r
⋅
3
−
3
2
=
−
3.
Find the equation of the line of intersection,
l
,
{l,}
l
,
between the two planes.
Attempt
l:
r
=
a
+
λ
d
,
λ
∈
R
.
{\mathbf{r}=\mathbf{a}+\lambda\mathbf{d}, \; \lambda \in \mathbb{R}.}
r
=
a
+
λ
d
,
λ
∈
R
.
a
=
{\mathbf{a}=}
a
=
(
{\Biggl(}
(
)
,
{\Biggr), \quad}
)
,
d
=
{\mathbf{d}=}
d
=
(
{\Biggl(}
(
)
{\Biggr)}
)
Answer
Back to top ▲
Question Progress
Start
Mastery
about
questions
progress