Question 1303c

Vectors II: Lines and Planes
Equation of a Plane from III

Question

The line l{l} and the plane p1{p_1} are given by
l:r=(310)+λ(251),  λR,p1:r(021)=2.\begin{align*} &l: \mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ - 5 \\ 1 \end{pmatrix}, \; \lambda \in \mathbb{R}, \\ &p_1: \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = 2. \end{align*}
Find the equation of the plane p{p} that contains l1{l_1} and is perpendicular to p1.{p_1.}

Attempt

p:{p: }
r{\mathbf{r}\cdot}
({\Biggl(}
){\Biggr)}
={=}

Answer

Question Progress

  • Start
  • Mastery