Math Pro
about
qns
questions
progress
Question 1304a
Vectors II: Lines and Planes
Equation of a Plane from the Normal Vector
Question
Generate new
The line
l
{l}
l
and plane
p
{p}
p
are given by
l
:
r
=
(
1
−
1
−
1
)
+
λ
(
−
4
5
5
)
,
λ
∈
R
,
p
:
r
⋅
(
1
4
−
1
)
=
31.
\begin{align*} &l: \mathbf{r} = \begin{pmatrix} 1 \\ - 1 \\ - 1 \end{pmatrix} + \lambda \begin{pmatrix} - 4 \\ 5 \\ 5 \end{pmatrix}, \; \lambda \in \mathbb{R}, \\ &p: \mathbf{r} \cdot \begin{pmatrix} 1 \\ 4 \\ - 1 \end{pmatrix} = 31. \end{align*}
l
:
r
=
1
−
1
−
1
+
λ
−
4
5
5
,
λ
∈
R
,
p
:
r
⋅
1
4
−
1
=
31.
Find the acute angle,
θ
,
{\theta,}
θ
,
between the the line and the plane.
Attempt
θ
=
{\theta = }
θ
=
∘
{^\circ}
∘
Answer
Back to top ▲
Question Progress
Start
Mastery
about
questions
progress