Question 1304a

Vectors II: Lines and Planes
Equation of a Plane from the Normal Vector

Question

The line l{l} and plane p{p} are given by
l:r=(342)+λ(023),  λR,p:r(323)=26.\begin{align*} &l: \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ - 2 \\ - 3 \end{pmatrix}, \; \lambda \in \mathbb{R}, \\ &p: \mathbf{r} \cdot \begin{pmatrix} - 3 \\ - 2 \\ 3 \end{pmatrix} = - 26. \end{align*}
Find the acute angle, θ,{\theta,} between the the line and the plane.

Attempt

θ={\theta = }
{^\circ}

Answer

Question Progress

  • Start
  • Mastery