Question 1304a

Vectors II: Lines and Planes
Equation of a Plane from the Normal Vector

Question

The line l{l} and plane p{p} are given by
l:r=(254)+λ(451),  λR,p:r(314)=48.\begin{align*} &l: \mathbf{r} = \begin{pmatrix} - 2 \\ 5 \\ - 4 \end{pmatrix} + \lambda \begin{pmatrix} - 4 \\ 5 \\ - 1 \end{pmatrix}, \; \lambda \in \mathbb{R}, \\ &p: \mathbf{r} \cdot \begin{pmatrix} - 3 \\ 1 \\ - 4 \end{pmatrix} = 48. \end{align*}
Find the acute angle, θ,{\theta,} between the the line and the plane.

Attempt

θ={\theta = }
{^\circ}

Answer

Question Progress

  • Start
  • Mastery