Question 1303a

Vectors II: Lines and Planes
Equation of a Plane from the Normal Vector

Question

The plane p{p} is given by
p:r(410)=3, p: \mathbf{r} \cdot \begin{pmatrix} - 4 \\ - 1 \\ 0 \end{pmatrix} = 3,
Find the equation of the line l{l} that is perpendicular to p{p} and contains the point A(4,5,2).{A \left( - 4, 5, 2 \right).}

Attempt

l:{l: } r=a+λd,  λR.{\mathbf{r}=\mathbf{a}+\lambda\mathbf{d}, \; \lambda \in \mathbb{R}.}
a={\mathbf{a}=}
({\Biggl(}
),{\Biggr), \quad}
d={\mathbf{d}=}
({\Biggl(}
){\Biggr)}

Answer

Question Progress

  • Start
  • Mastery