Question 0511

Sigma Notation
2011 Paper 1 Question 6 Variant

Question

(a)
Using the formulae for cos(A±B),{\cos(A \pm B),} prove that
cos(r12)θcos(r+12)=2sinrθsin12θ.\cos {\textstyle (r - \frac{1}{2})} \theta - \cos {\textstyle (r + \frac{1}{2})} = 2 \sin r \theta \sin {\textstyle \frac{1}{2} \theta}.
[2]
(b)
Hence find a formula for r=1nsinrθ{\displaystyle \sum_{r=1}^n \sin r \theta} in terms of cos(n+12)θ,{\cos (n+\frac{1}{2}) \theta,} cos12θ{\cos \frac{1}{2} \theta} and sin12θ.{\sin \frac{1}{2}\theta.}
[3]

Answer