Math Pro
about
qns
questions
progress
Question 0511
Sigma Notation
2011 Paper 1 Question 6 Variant
Question
Generate new
(a)
Using the formulae for
cos
(
A
±
B
)
,
{\cos(A \pm B),}
cos
(
A
±
B
)
,
prove that
cos
(
r
−
1
)
θ
−
cos
r
=
2
sin
2
r
−
1
2
θ
sin
1
2
θ
.
\cos {\textstyle (r - 1)} \theta - \cos {\textstyle r} = 2 \sin { \textstyle \frac{2r-1}{2}} \theta \sin {\textstyle \frac{1}{2} \theta}.
cos
(
r
−
1
)
θ
−
cos
r
=
2
sin
2
2
r
−
1
θ
sin
2
1
θ
.
[2]
(b)
Hence find a formula for
∑
r
=
1
n
sin
2
r
−
1
2
θ
{\displaystyle \sum_{r=1}^n \sin { \textstyle \frac{2r-1}{2}} \theta}
r
=
1
∑
n
sin
2
2
r
−
1
θ
in terms of
cos
n
θ
{\cos n \theta}
cos
n
θ
and
sin
1
2
θ
.
{\sin \frac{1}{2}\theta.}
sin
2
1
θ
.
[3]
Answer
Back to top ▲
about
questions
progress