Question 1219

Vectors I: Basics, Dot and Cross Products
2019 Paper 2 Question 5 Variant

Question

With reference to the origin O,{O, } the points A,B,C{A,B,C } and D{D} are such that OA=a,{\overrightarrow{OA}=\mathbf{a}, } OB=b,{\overrightarrow{OB}=\mathbf{b}, } OC=3a+2b{\overrightarrow{OC}=3 \mathbf{a} + 2 \mathbf{b} } and OD=b+4a.{\overrightarrow{OD}=\mathbf{b} + 4 \mathbf{a}.}
The lines BD{BD} and AC{AC} cross at X.{X.}
(i)
Express OX{\overrightarrow{OX}} in terms of a{\mathbf{a}} and b.{\mathbf{b}.}
[4]
The point Y{Y} lies on CD{CD} and is such that the points O,X{O,X } and Y{Y} are collinear.
(ii)
Express OY{OY} in terms of a{\mathbf{a}} and b{\mathbf{b}} and find the ratio OX:OY.{OX:OY.}
[6]

Answer