Question 1210

Vectors I: Basics, Dot and Cross Products
2010 Paper 1 Question 1 Variant

Question

The position vectors a{\mathbf{a}} and b{\mathbf{b}} are given by
a=(05p12p)andb=(122),\begin{align*} && a=\begin{pmatrix} 0 \\ 5 p \\ 12 p \end{pmatrix} \\ \textrm{and} \quad && b = \begin{pmatrix} - 1 \\ - 2 \\ 2 \end{pmatrix}, \end{align*}
where p>0.{p>0.} It is given that a=b.{|\mathbf{a}| = |\mathbf{b}|.}
(i)
Find the exact value of p.{p.}
[2]
(ii)
Evaluate (a+b)(ab).{(\mathbf{a}+\mathbf{b})\cdot(\mathbf{a}-\mathbf{b}).}
[3]

Answer